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Many electro-spraying devices raise to a high electric potential a pendant drop of 
weakly conducting fluid, which may adopt a conical shape from whose apex a thin, 
charged jet is emitted. Such a jet eventually breaks up into fine droplets, but often 
displays surprising longevity. This paper examines the stability of an incompressible 
cylindrical jet carrying surface charge in a tangential electric field, allowing for the 
finite rate of charge relaxation. The viscosity is assumed to be small so that the shear 
resulting from the tangential surface stress can be large, even for relatively small fields. 
This shear can suppress surface tension instabilities, but if too large, it excites electrical 
ones. For imperfect conductors, surface charge is redistributed by the rapid fluid 
reaction to variations in tangential stress as well as by conduction. Phase differences 
between the effects due to the tangential field and the surface charge lead to charge 
‘ over-relaxation’ instabilities, but the maximum growth rate can still be lower than in 
the absence of electric effects. 

1. Introduction 
The behaviour of a drop of poorly conducting liquid in a strong electric field is a 

classical problem, originating in the study of thunderstorms. As the external field 
strength is slowly increased, the shape of the drop adjusts to the resultant surface 
stresses. An initially spherical drop becomes elongated, and eventually loses stability to 
one of two mechanisms. During a period of dynamic evolution, the drop may either 
break up into two smaller drops, or may emit a thin jet from a pointed region of its 
surface (Sherwood 1988). 

This latter behaviour is closely related to the electrostatic spraying process, depicted 
in figure 1. A liquid is passed through an aperture which is raised to a high electric 
potential. For suitable parameter ranges a steady state is reached, known as ‘the 
electrohydrodynamic conejet’ in which the fluid surface becomes almost conical, with 
a thin jet emanating from its apex. This jet eventually becomes unstable, breaking up 
into droplets. The diameter of these droplets is much smaller than that of the aperture, 
providing a mechanism for the production of fine sprays. The process has many 
practical applications, for example in paint spraying and crop spraying. 

In the absence of the jet, Taylor (1964) showed using a static local analysis that the 
cone adopts the ‘Taylor angle’, 49.3’. As the field strength is increased and the jet is 
formed, dynamic effects become important and cones of smaller angles are observed. 
Not all parameter ranges permit the formation of a stable conejet, although the 
reasons for this are not fully understood. There is a range of fluid conductivities for 
which it is generally agreed that the phenomenon occurs, but it does not always 
manifest itself in experiments with impure water, for which the conductivity is 
relatively high. The difficulties in producing aqueous conejets can, however, be 
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FIGURE 1. The electro-hydrodynamic cone-jet. 

ascribed to the relatively high surface tension which necessitates an electric potential 
greater than the breakdown voltage of air (Zeleny 1915). Water cone-jets can be 
formed in other atmospheres, or if surfactants are added to lower the surface tension 
(Smith 1986). Drozin (1955) reported difficulty in producing jets at low permittivity, 
but these do occur if the conductivity is not too small (Jones & Thong 1971). Various 
other experimental results can be found in Zeleny (1917), Hayati, Bailey & Tadros 
(1987), Cloupeau & Prunet-Foch (1989), Bailey (1988), Michelson (1990), Fernandez 
de la Mora et al. (1990), Fernandez de la Mora & Loscertales (1993), and the references 
therein. 

In this paper we concentrate on the question of the stability of the emitted jet. 
Previous studies have tended to consider either a charged jet in the absence of an 
external electric field (Bassett 1894; Taylor 1969; Saville 1971 h) or an uncharged jet in 
a uniform tangential field (Nayyar & Murty 1960; Saville 1970, 1971~). Taylor 
demonstrated that some of the surface tension instabilities found by Rayleigh (1 879) 
could be stabilized by a sufficiently large surface charge, while the growth rates of other 
increased. He also produced experimentally jets which exhibited remarkable longevity. 
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If charge relaxation can be considered instantaneous, Saville (1970) showed that an 
uncharged jet could be completely stabilized by a strong enough field. In a later paper, 
(Saville 1971 a), he showed that effects of finite charge relaxation time were destabil- 
izing. The instability could be either oscillatory or direct, in contrast to the planar relax- 
ation instabilities found by Melcher & Schwarz (1968) which are always oscillatory. 
We shall find in 97 that there is a field strength which optimizes stability in this case. 

When the jet is produced in the cone-jet process, both tangential fields and surface 
charges are present. Furthermore, the effects of charge relaxation cannot be ignored. 
An electric current is observed to pass through the cone into the jet. In the conical 
region this current is usually carried by conduction, but when the jet is formed, and 
breaks up into drops, the current can only be carried by the fluid motion of charges (a 
convection current). Indeed, the width of the jet, and hence the size of droplets 
eventually produced, is determined partially by the requirement that a sufficiently large 
convection current be supported. 

In this paper we investigate the interactions between surface charge, tangential field 
and charge relaxation with regard to the stability of the jet. A natural model to consider 
is that of a cylindrical jet of radius a with constant electrical permittivity e and 
conductivity v, carrying a uniform surface charge qo in a constant tangential electric 
field E,. The exterior of the jet is assumed to be an insulator with vacuum permittivity 
c,. The electrical properties are then defined by the two parameters e,,E,/q, and e/co, 
together with some measure of field strength and the charge relaxation time. The linear 
stability may be investigated by perturbing the surface with modes K eikz+imo+st in 
terms of cylindrical coordinates ( r ,  8, z )  in a frame aligned and moving with the jet. 

There are various interacting physical processes in the problem, each with its own 
characteristic timescale on which instabilities might be expected to grow. The 
timescales of charge relaxation, collapse due to surface tension and viscous diffusion 
are respectively 

where y, p and p are the fluid's surface tension, density and viscosity. When the jet is 
produced by the cone-jet process, the fluid can choose its lengthscale a at will, but the 
other quantities are fixed for a given substance. If u, is a typical jet velocity, the ratio 
of conduction to convection currents is of the order na2aEo/2nau0 qo z a/7, u,. For 
conejets this ratio is arguably O(1) (Hines 1966). Typical values in MKS units 
based on Hayati et al. (1987) are p = 2.5 x N s m-2, y = 2.4 x lo-' N m-', 
a = 3.3 x lo-' ohm-' m-l, p = lo3 kg m-3, c = 2 x F m-l and a = 2 x low5 m, for 
which the above timescales in seconds are 7, = 6 x 7, = 1.8 x lop5 and 
7, = 1.6 x lop4. Viscous action is therefore comparatively slow and it makes sense to 
investigate the high-Reynolds-number limit, for which the growth rate s satisfies 

7, = c/v, r, = ( ~ ~ a ' / y ) ~ / ' " ,  7, = pa2/p,  (1.1) 

Is( 9 p / p 2  or Is7,1 4 1. (1.2) 
There is a difficulty associated with this limit. For simplicity we would like to assume 
an initially uniform jet velocity. However, a tangential stress, qnEn, acts upon the fluid 
surface in the unperturbed state, and so the jet necessarily accelerates. We might argue 
that for sufficiently fast jets this acceleration can be neglected, just as we neglect the 
gravitational acceleration, g .  However, the surface stress also generates vorticity which 
diffuses into the interior. If the viscosity is low, the shear can be large and in a fully 
diffused state the vertical velocity u, is given by 

4-2 
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assuming both gravity and the jet are aligned with the z-axis. If we wished to perturb 
about a genuinely steady state, we could require the tangential stress to balance gravity 
exactly so that the net acceleration of the jet is zero. More generally, the uniform 
accelaration may be neglected for vertical wavenumbers k such that 

However, the more serious assumption of uniform velocity and consequent neglect of 
vorticity in the stability analysis would be justified only if 

a 4 0  Eo 
- + (Vul or Is1 % -. 
a t  P 

In conjunction with (1.2), this would require qo Eo 4 pa2 Is'I, which if electric effects are 
to be at all significant would imply that co Eo/qo must either be very small or very large. 
Thus the assumptions of high Reynolds number and a uniform unperturbed jet are 
consistent only if either the surface charge or the tangential field is small. These limits 
are investigated in $97 and 8. In the general case, we might anticipate instabilities on 
the shear timescale, 70, 

as well as on the relaxation and capillary scales 7, and 7, and on some electric timescale. 
We shall refer to three electric timescales, 7,, 7q, rE and their inverses s,, sq, sE, where 

70 = so1 where so = qo Eo/,u, (1.6) 

As so = s," 7u, we have so 9 s, from (1.2), but if either qo or E, is small, sE or sq can be 
greater than so. 

The main advantage of considering a uniform jet is that the perturbed flow remains 
irrotational apart from thin surface layers, which simplifies the analysis. However, 
provided the perturbation is axisymmetric (rn = 0), similar simplification occurs for the 
quadratic r-variation of (1.3). This is because the potential vorticity, (l/r) av,/ar, is 
constant and the vortex lines are not disturbed by the perturbation. For this reason we 
shall concentrate on axisymmetric modes in $2 and 93,  where we formulate the 
electrohydrodynamic stability problem. We nevertheless calculate the electric field 
perturbation for general m in $ 4  for use in 957 and 8 and other limits. The cases 
7, z 0 (high conductivity), T~ z 0 (high shear), qo z 0 (low surface charge) and Eo z 0 
(low tangential field) are considered in 995, 6, 7 and 8, and we conclude in 99. 

2. Perturbation of the jet 
We consider an incompressible cylindrical jet of radius a, uniform density p and 

viscosity p, with v = p/p.  We assume that gravity is negligible on the lengthscales of 
interest as in (1.4) and make a Galilean transformation to a frame moving with the 
surface of the jet. The velocity and pressure in the equilibrium state are given in terms 
of cylindrical coordinates (Y, 8, z )  by u = (0, 0, uo(r)),p = po ,  where from (1.3) 

(2.1) 
In this accelerating frame we have Poiseuille flow back up the jet, driven by the 
fictitious inertial force. We consider a perturbation so that the surface Stakes the form 

u =- la  so( 1 - r2/a2) .  

y = a( 1 + ,?) where ,? = 6 eikz+i7n0+st, (2.2) 



Electrohydrodynamic stability of a slightly viscous jet 97 

with 6 + 1 and s being the (complex) growth rate of the disturbance. The wavenumbers 
k and m are real and positive but otherwise arbitrary save that m must be integral. For 
reasons discussed above, we shall take m = 0 unless qo E, is small. In terms of the non- 
dimensional wavenumber 

the unit normal to S,n, is given by 
K = ka, (2.3) 

(2.4) ri = (1, 0,O) - iY(0, m, K )  + O(P),  

and the surface curvature, C, is given by 

(2.5) 
1 Y  

' - a  a 
C =  (V-ri)l ----(1-m2-K2)+O(62). 

Inside the perturbed jet, to leading order in S the velocity u and pressurep take the form 

(2.6) = (03 0, uo(4) + YUl(r)% P = Po + CP'p,(r>- 

If we restrict ourselves to axisymmetric perturbations (m = 0), then the velocity is 
poloidal, while the vorticity remains azimuthal, 

We may then define a streamfunction $(r) such that 

u, = -ik$/r, u, = f / r  and wr = -D2$, (2.8) 

where ' denotes differentiation with respect to the argument, and the Stokes operator 

The vorticity equation takes the form 

(s + iku,) rw - u,(rut - uh) = vD2(wr) (2.9) 

(e.g. Drazin & Reid 1981, p. 217). For the parabolic profile (2.1) the middle term 
disappears from (2.9) and the solution may be found in terms of confluent 
hypergeometric functions (Pekeris 1948). Here we are interested in the low-viscosity 
limit, which it is easier to find directly from (2.9). In the absence of a source term, the 
vorticity perturbation w is generated only at the boundary, from where it can diffuse 
but a short distance in the time available. The viscous terms and w are thus negligible 
outside a surface boundary layer, and noting that .,(a) = 0, we can write down the 
solution 

w = - BP2 efl(,-')( 1 + O(pa)-'), (2.10) 

p2 = s / v  with Re{P} 2 0  and lpal 3 1, (2.11) 

(2.12) 

for some constant B, where 

and we assume k 4 p. The streamfunction then takes the form 

$ = ArZ,(kr) + Ba efl(,-')( 1 + O(pa)-') 

for some constant A ,  where I ,  is a modified Bessel function. The first term in (2.12) 
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corresponds to irrotational flow. Standard boundary-layer arguments may be used to 
show that the pressure is constant across the surface layer, and so p1 is determined by 
the z-component of the inviscid momentum equation evaluated outside the layer 

(s + iku,) u, + u, uh = - ikp,/p. (2.13) 

From (2.8) and (2.12), without the boundary-layer term and using the identity 
I;(x)  + I,/x = I,(x),  

(2.14) 

The constants A and B are determined by the perturbed surface stresses, T, and T,, 
which we write in the form 

(2.15) 

The tangential viscous stress to leading order in pa is in the z-direction, so from (2.6) 

or from (2.Q (2.12), (2.15), (2.11) and (1.6), 

(2.16) 

(2.17) 

The normal stress condition is 

T, = + + 2pfi [(A * V) u], (2.18) 

although the deviatoric stress could in fact be neglected in favour of the pressure for 
this high-Reynolds-number flow. There are some subtleties associated with this term, 
which we discuss in $3. We write 

A * [(A * V ) U ]  = LR, (2.19) 

where from (2. l), (2.4) and (2.6) pR - 4, E, as p + 0. From (2.15) and (2.14), 

p s  = pA[isZ,(K) + s, 11(~) ]  + 2pR + (J(pa)-'. (2.20) 

Finally, we apply the kinematic boundary condition 

D 
-(r-a[)=O on S, 
Dt 

(2.21) 

where D/Dt is the material derivative, or, since uo(a) = 0, to leading order in 6, 

as = u,(a) = - ik(AI,(K) + B). (2.22) 

Combining (2.22), (2.20) and (2.17), we obtain the characteristic equation for the 
growth rate s 

- K(PS - (2.23) 
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where T,  = iK(T,-qoEo). (2.24) 

If ps  and T,  are independent of s, (2.23) is a cubic equation for s. Instability occurs if 
any root has a positive real part. In fact, we shall see in 9 5  that the perturbations to 
the electric surface stresses do depend on s if 7, =t= 0, but first we consider some simpler 
cases. 

If no tangential stress acts on the equilibrium state, so that qo Eo. = 0 = s the above 
analysis easily extends to non-axisymmetric modes. The appropriate relation is then 

9' 

- K P ~  = 7 I m  @a2s2 + T,), 
*m 

(2.25) 

where now T,  = iKT,+imT, (2.26) 

and T, is the azimuthal stress perturbation. The Bessel function I,(K) is such that 
I ,  > 0 and I; > 0 for all m and K > 0. In the absence of any tangential stresses, so that 
T,  = 0, stability can therefore be inferred from (2.25) if the surface perturbation p s  is 
real and positive. The physical processes giving rise to p s  may then be interpreted 
as providing a simple restoring force. In the Plateau problem, a surface tension y acts 
with a constant external pressure pA.  The appropriate boundary condition on S is 
p = p A +  yC, whence from (2.5), (2.15) and (2.18) po = p A + y / a  and 

(2.27) 

giving stability unless m = 0 and K < 1. The most unstable mode is K z 0.7 for which 
s7, M 0.3433, where the capillary timescale 7, is given by (1.1). These classical results 
were given by Rayleigh (1879), demonstrating the instability of jets to long-wavelength 
axisymmetric disturbances which causes them to break up into droplets. It is observed 
that the charged jets that occur in electrostatic spraying processes can exhibit greater 
stability than uncharged jets, although they too eventually break up. The main purpose 
of this paper is to understand this phenomenon. 

Some insight is gained by considering a weak tangential stress of Ob) ,  and then 
letting p+O, so that qoEo = 0 = T,, m = 0 but so =+ 0. Equation (2.23) is then a 
quadratic in s which will have a root with a positive real part unless p s  is real and 

(2.28) 

This stability condition is weaker than ps  2 0, suggesting that the presence of vorticity 
in the basic flow may be stabilizing, at least for axisymmetric modes, as given by Leib 
& Goldstein (1986). In our problem, however, T,  + 0 and in the next section we 
consider the influence of electric effects on the surface boundary condition. 

3. Electro-quasi-statics 
and permittivity E and 

is surrounded by an insulator of vacuum permittivity e0. The charge relaxation time 7, 

and the relative permittivity h are defined by 

We suppose the liquid jet has constant electric conductivity 

7, = e / c ,  and h = e/eo. (3.1) 
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FIGURE 2. The perturbation of the electric field. 

We denote by E+ and E-  the electric field outside and inside the jet respectively, which 
we derive from potentials $+ and $- so that E' = -04'. These potentials satisfy 
Laplace's equation as there are no volume charges present. 

The electrical properties are discontinuous across the surface S, giving rise to 
discontinuities in the electric field and a resultant surface stress. We denote by En and 
Et the components of E* normal and tangential to the perturbed surface S .  The jump 
conditions on S are 

[E,] = E,f-E; = 0 or [$I = 0 (3.2) 

and [&,I E e0 EL - EE, = qs, (3.3) 

where qs is the surface charge density. One further relation reflecting the conservation 
of charge is required to determine the problem. Charge flows into the surface carried 
by the normal current, (TE;. Were the convection current due to fluid motions 
negligible in comparison, we would require 

E; = 0. (3.4) 

However, as discussed in the introduction, in this paper we are interested in processes 
for which the charge relaxation time and convection current are not negligible. We 
must therefore formulate the charge conservation law more precisely (Melcher & 
Schwarz 1968). 

Consider an infinitesimal surface element L', moving with the fluid and supporting 
a variable surface charge density qs as in figure 2. Equating the rate of change of charge 
over the element with the rate of charge arrival due to conduction current gives 



Electrohydrodynamic stability of a slightly viscous jet 101 

where D/Dt denotes the material derivative. Dividing through by Z and using the 
formula for dilation of surface elements (e.g. Batchelor 1967, p. 132), we obtain 

CTE; = a - q s A .  [ ( A .  v ) ~ ] .  
Dt 

Together with (3.3), (3.6) provides the appropriate relation between E,+ and E; for 
general values of E and CT. In the particular problem we are considering, the dilation 
factor is first order in S as in (2.19), so that expanding the surface charge in the form 

(3.7) 4s = 40 + c411 

and from (2.19), noting that uo(a) = 0, we obtain the linearized version of (3.6) 

From (2.4) and (2.6), R is given by 

or from (2.8), (2.12) and (2.17) 

(1 +O@a)-‘). (3.10) 

We note that as p --f 0 with fixed and qo Eo $. 0, the third term in (3.10) is larger than 
the second which is in turn larger than the first, by an order of p-l” in each case. 
However, we shall see in $4 that T,  depends on R and often the second and third terms 
are of equal magnitude. From (3.10) and (2.11), 

T 

(3.11) 

Equations (3.2) and (3.8) determine the electric field inside and outside the jet. The 
resultant stress on S may then be found from the Maxwell stress tensor, which is given 
in Cartesian form by 

T .  23 = E E ~ E ~ - & I E ~ ~ S ~ ~ .  (3.12) 

If we denote by T,, the jump in normal stress across the surface S, then 

T,, = [ ~ E ~ ] - ~ [ ~ E ~ ] - ~ [ E I E , ~ ~ ]  
- L E  EnfZ-1 2 ~ E , 2  + ~ ( E - E ~ )  IEtI2, 
- 2 0  

since Et is continuous. The jump in tangential stress, qt, takes the form 

(3.13) 

(3.14) 

from (3.2) and (3.3). If follows from (3.14) that a fluid supporting surface charge in a 
tangential field must be in motion, as the tangential electric stress can only be balanced 
by a viscous stress (Melcher & Taylor 1969). This basic electrohydrodynamic effect is 
responsible for the vorticity in our unperturbed flow and for the boundary-layer 
structure of the perturbation. 

With electric effects included, the normal stress balance on S requires, from (2.18), 

(3.15) p+2pRC = PA +$- T,,, 
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which we write to lowest order in the form p o  = p A  + r / u  - T,. At order 8, the analogue 
of (2.27) is 

p s  = -l$!(l-rn2-KZ). (3.16) 
U 

The quantity 
next section. 

involves the first-order perturbation to T,, which we calculate in the 

4. Perturbation of the electric field 
We are considering a circular cylinder carrying a uniform surface charge qo in a 

constant tangential electric field (0, 0, Eo). The surface is perturbed according to (2.2), 
giving rise to field perturbations proportional to c, where, in this section, m is not 
necessarily zero. The harmonic functions with the z and 0 dependence of 6 involve once 
more the modified Bessel functions I ,  and K,, which must be chosen to guarantee 
regularity at r = 0 and r = GO. The potentials q5* therefore take the form 

I 4- = - E, z + aD<I,(kr) 

where C and D are constants to be determined from (3.2) and (3.8). Application of (3.2) 
on r = a( 1 + 8 yields 

From (4.1) and (2.4) we find 

which on r = a( 1 + <) takes the form 

In (4.4) and from now on, the suffix rn and the argument K will be neglected from the 
Bessel functions I and K. Similarly, 

E l  = - c(iKEO + DKr), 
and so from (3.3) and (3.7) 

q1 = - iKEo(co - c) - co CKK' + ~ K I '  - qo. 

Combining (3.8), (4.5) and (4.6), we obtain 

(4.5) 

where 
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The constants C and D may be found from (4.7) and (4.2), giving 

where W, = aKZ' - IK' and for future use W, = AKZ' - ZK'. (4.10) 

We now calculate the perturbation to the normal surface stress. Since E;E is of order S, 
we may rewrite (3.13) as 

T,, = f e o E ~ 2 + ~ ( e - e o )  IE,Iz+O(Sz). (4.11) 

The tangential field is most easily calculated from &, giving 

Et = (0, 0, E,) + I[(KEO, -mDZ, - KDZ) + 0(62) ,  (4.12) 

so that IEJZ = E," - 2 i ~ E ,  DZ[+ O(P). (4.13) 

From (4.1 l), (4.4) and (4.13), 

Writing T,, = T,+c(:(T,-2,uR) as in (3.16) and using (4.9), we find 

(4.15) 
S 

where we have used the Wronskian identity K ( K ~  - ZK') = 1. Similarly, the tangential 
stress in (3.14) may be expanded T,, = (0, 0, qo E,) + [Ti,  so that from(3.7), (3.14) and 
(4.12) 

TI = (q, &, T,) = (iKE, q,, - iq, mDI, E, q1 - iKDZq,) (4.16) 

and hence, combining the definitions (2.24) and (2.26), 

T,  = iK(T,-q,E,,)+im& = ( ~ ~ + m ~ ) q ~ D Z + i ~ E ~ ( q ~ - q ~ ) ,  (4.17) 

which can be found from (4.6) and (4.9). We are now in a position to write down the 
dispersion relation for axisymmetric modes, given by (2.23), (3.16), (4.15) and (4.17), 
namely 

Y @a2s2 + T,) = - a ~ ( 1 -  K ~ ) +  KT.  (4.18) 

This would be a cubic equation in s were it not for the s dependence of :(T, and &. The 
condition for stability is that each root should have a negative real part. In addition 
to the wavenumber K, equation (4.18) depends on five parameters: h and four suitable 
ratios of the timescales 7,., 7,, 7E, 7q and 7,. For given values of these parameters, the 
most unstable wavenumber and corresponding growth rate may be readily found, but 
it is difficult to discuss the behaviour in general without further simplification. We have 
already taken the low-viscosity limit 7, + 0 and we now proceed to examine various 
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further asymptotic limits. In 46 we consider the high-vorticity limit 7,, +O, while in 
447 and 8 we discuss the cases of low surface charge 7q - co and low tangential field 
7 E +  co. First, we investigate the high-conductivity limit 7r+ 0. 

5. The high-conductivity limit 
When the charge relaxation time is small, the field responds instantaneously to the 

surface perturbation, with the result that the surface stresses are independent of s. As 
we let 7, + 0 and a + co, equations (4.6), (4.15) and (4.17) become 

and (5.3) 

The phase difference between effects due to the surface charge qo and the tangential 
field E,, is clear from the appearance of i in (5.1). This gives rise to oscillatory electrical 
instabilities in many limits. We begin by considering some special cases. 

is real and proportional to (1 + KK'/K) .  
This expression is positive only for m = 0 and 0 < K < 0.6, approximately. From (4.18) 
with s,, = 0 we see that electric effects help to stabilize the jet against the axisymmetric 
Rayleigh instability for small wavenumbers. However, for 0.6 < K < 1 ,  a range which 
includes the most unstable mode, both electrostatic and surface tension forces are 
destabilizing. It therefore appears that surface charge should enhance the instability of 
a jet. This result was given by Taylor (1969) correcting a flawed equation of Bassett 
(1894). 

However, adding a small tangential field and a consequent O(1) shear to the basic 
flow can lead to the opposite conclusion. If En = O(,U), then we may take consistently 
so = O(1) but E,,+O. As we saw in §2 ,  the stability condition may then be written 

When En = 0 = R, we have T,  = 0 while 

where s, = 7i1 as in (1.1). A large enough value of s,, will stabilize all axisymmetric 
modes in this limit. 

and - T,  are real and negative for all m and K since E > E,, for 
physical reasons. Equation (4.18) indicates that electric effects are stabilizing for all 
wavenumbers in this limit, as given by Saville (1970). Introduction of small q,, and 
consequent O( 1) values of s,, can once again be shown to have a stabilizing influence. 

We suppose now that q,/q, En is O( 1). As q, E,, =l= 0, we take rn = 0 and rewrite (4.18) 
in the form 

When q,, = 0, both 

(5.5) 

A typical value of 
have 

and T,  is q,, En = ps,. As the viscosity is small, from (1.2) we must 

pa2s,lsl % IT15 lT,l, (5.6) 
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and so (5.5) is to the same order of approximation 

1 3  ' T,  -s -lsos2-s;K(1 -K2)S-iS05 = 0. 
I' Pa 

(5.7) 

The sum of the roots of (5.7) is purely imaginary, but their product is not, as T, is 
strictly complex. It follows that at least one root has a positive real part. However, we 
are only concerned with timescales shorter than the viscous scale 7,, and it may be that 
the instability is slow. We must distinguish between the cases 7, - 70 and 7, $- 7,,. (If 
7, < 7,, then none of the electric effects can compete with the Rayleigh surface tension 
instability.) If surface tension is no larger than the electric stresses, then 7, $- 70 and by 
an argument similar to the above we may set s, = 0 in (5.7). One of the roots of (5.7) 
is then rapidly oscillating on the shear timescale 70, 

I' 
Z s = is, - + O(7;l). 

This root corresponds to neutrally stable inertial oscillations. In fact the real part of 
(5.8) is negative, but this is not relevant as we have already neglected terms of this 
magnitude. The other two roots are given to leading order by 

One of these latter two will be unstable on an electric timescale. We find that the real 
part of this unstable root is a monotonic increasing function of K,  and so the largest 
growth rate may be found by letting K+ a, when 

(5.10) 

using the asymptotic form of the Bessel functions, or 

s - 2/2 iKSE + s,/2/2. (5.11) 

Once again we have a rapid oscillation, but one which grows on the electric timescale 
7*. The neglected surface tension term in (5.7), which becomes significant when 

K 2  - sE/s:, (5.12) 

If the capillary time is short, so that 7, - 7,, then two of the roots of (5.7) are large, 

(5.13) 

This case we considered at the end of $2 and in (5.4). On the fast timescale we have 
stability provided 

S: 7; 2 4 4  1 - K ~ )  Z/I'. (5.14) 

The long waves (K+  0) are the last to be stabilized, requiring so 2 2/2s,. The other root 
of (5.7) is small, s - s,2/s, = 7;l. Indeed, the roots of (5.13) also have real parts of this 
order, but these must be neglected for consistency with our other approximations. 

We conclude that for highly conducting jets, the axisymmetric modes can be 
stabilized by a suitable shear. This is consistent with the experiments of Huebner (1969) 

limits the size of the most unstable wavenumber. 

satisfying 
Z 
I' -S2-iS0S-K(1 -K2)S," = O(s,2). 
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which showed that non-axisymmetric modes could cause the break-up of water jets. If 
the shear is too great, however, then axisymmetric oscillatory instabilities are to be 
expected on the electric timescale T ~ .  

6. High shear 
In this section we consider the case where the shear timescale is shorter than those 

of charge relaxation or surface tension. In some ways this limit is a natural extension 
of the assumption of low viscosity. As we let so + 03 in (4.18), we see that there will be 
one root with s N so % s,, 

s = is, I ' / I+ O(s;/s,) + O(T;~) ,  (6.1) 

corresponding to neutrally stable inertial oscillations which do not interest us. The 
other roots have s < so for which the term in the first bracket in (4.18) is large, and as 
T,  N T,, we must require 

T,  is 

Fa so 
s2+---2- x -s: ~ ( 1  -K' ) .  

To begin with, we neglect the capillary term on the right-hand side of (6.2) as ,u + 0, 
assuming Is1 % ~'s:/s,. In fact we shall find that the most unstable modes have a 
wavenumber large enough for this term to be significant. Unlike in the case of rapid 
charge relaxation, the electric stresses may need time to adjust to the perturbation, so 
that T,  depends on s. Furthermore, both & and the surface dilation factor R are large. 
Since R - so and s07,  % 1 in this limit, not only is R / s  9 1, but also R/s  % a, from 
(4.8). We repeat (3.1 l), 

and calculate T,  from (4.17) in the limit of large (Rls):  

We see from (4.8) and (4.10) that W, depends on ST,. The size of this product depends 
on the order of so T ; / T , ~ ,  which could be small even though so T, 9 1. If ST, < 1, then 
W, = AKI'/ST, and from (6.2), (6.3) and (6.4) 

The growth rate Re [s] is an increasing function of qo and K, the latter limited by surface 
tension. Rapidly growing short waves will appear, with s N K S * ( S ~  T , ) ~ ' ~ .  

If sT, % 1, then W, x W, from (4.10). Combining (6.2), (6.3) and (6.4), and writing 

we obtain n2+bn  = ib, where b = 

These last two equations define six values of s. However, defining arguments to lie in 
the range (- n, n), we must require from (2.11) that n/2 2 1 arg ( ~ l / ~ ) l ,  which halves the 



Electrohydrodynamic stability of a slightly viscous jet 107 

number of roots. Stability would require all roots in the range n:/2 2 I arg (sliZ)l 2 n/4, 
so that n: 3 I arg (n)l 2 3n/4. It turns out that there is always at least one unstable root. 
We conclude that as , u + O  we will encounter here also rapidly growing (s - [ ~ ~ / , u ] l / ~ )  
short waves, of a size limited by surface tension. It is interesting to note that the terms 
in (6.3) are of the same order. The relative slowness of charge relaxation leads to large 
tangential stress perturbations, which in turn give rise to large tangential velocities in 
an effort to redistribute the surface charge. 

We now consider the effect of the surface tension term in (6.2), which is negligible 
as so + 00 for fixed K unless s, is also large. As s, increases, the terms in (6.2) become 
of the same order when s: s, - s," with the growth rate still of the order s - (so ~ ,2 ) l /~ .  If 
s, increases further the electrical terms are small and to leading order we recover the 
stability condition (5.14). Assuming this is satisfied, the growth rate will be small, of 
the order 

When s, - so we recover the familiar possibility of stability on timescales less than 7,. 

We conclude that jets for which the shear is much larger than surface tension will be 
highly unstable, but a suitable balance between the two is stabilizing, at least for 
axisymmetric modes. 

Re [s] - s: si/s: = ~;'(s,/s,)~. (6.8) 

7. Low surface charge 

charge q,, so that 

In this limit it is quite consistent to neglect the tangential stress on, and non-uniform 
velocity of the unperturbed jet at high Reynolds number. We shall therefore include 
non-zero m in the discussion, as outlined in $2. As we let q o + O  in $4, we find 

The analysis simplifies greatly when the tangential field E, dominates the surface 

40/("0 Eo) 4 1. (7.1) 

= - (h  - 1) IK[e ,  J!$ K(CL - 1) + iq, E, R/s],) 

and 

As we observed in $ 3, the surface dilation factor R is potentially large as ,u + 0, and so 
we include in (7.2) terms involving the product qo R. In fact, provided 

(7.3) 

the effects of small qo may be considered as a regular perturbation of the case qo = 0, 
which we examine first. The low-conductivity limit was considered by Nayyar & Murty 

s 2 so = q,E,/,uu, 

(1960). If take the high-conductivity limit, 7, + 0 and a + 00, we obtain from (4.18) and 
(7.2) 

as given by Saville (1970). Both of the electric terms in (7.4) are stabilizing for all 
wavenumbers. A sufficiently high value of E,, or more precisely of ac0E,2/y, will 
therefore guarantee stability of the jet in this limit, as discussed in $5.  Stability for given 
sE and rn = 0 will be afforded also by a suitable shear so. 

When qo = 0 but 7, is not negligible, the characteristic equation (4.18) is a cubic in 
s, which we write as 

P+a2s^2+a,s^+a, = 0, (7.5) 
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where s  ̂ = srr, and a,,, a, and a2 are given below. The stability condition is that all three 
roots should have a negative real part. In general, the number of roots of a polynomial 
in a half-plane may be found using the principle of the argument (Henrici 1974, p. 485). 
Here, the coefficients a, are real, and the appropriate conditions for strict stability are 

a2 > 0, a, > 0 and a2a1 > a,. (7.6) 
We introduce the non-dimensional parameters E and G by 

Then (7.5) is equivalent to (4.18) provided 

a2 = hKI'/ W,, 

a, = - G( 1 - m2 - K')  
( A  - 1)2 E'K'I'K 

w, 
KAKI" 

a, = A K ~ E ~ - G ( ~ - W Z ~ - - K ~ ) -  w,z ' 

as given by Saville (1971a) with different notation. Now since h 2 1, KI' > 0 and 
IK' < 0, it follows from (4.10) that W, > 0 and that 1 > a2 > 0. The first condition in 
(7.6), which is equivalent to the sum of the roots of (7.5) being negative, is thus satisfied 
for all m and K .  After some manipulation, the condition a, > 0 is seen to be precisely 
the same stability condition as occurs in the high-conductivity limit, namely that the 
right-hand side of (7.4) should be negative. However, 

The final requirement for stability in (7.6) is thus violated for all wavenumbers. As 
surface tension does not appear in (7.9), it is tempting to regard the instability as a 
wholly electrical effect, due to charge relaxation. However, the unstable roots of (7.5) 
may be either real or complex, and it is natural to identify the real instabilities as being 
driven predominantly by surface tension, and the complex ones by charge over- 
relaxation. It is interesting that the interaction of the two processes can produce 
enhanced stability behaviour. For fixed values of K and the other parameters, as E is 
increased from zero, the cubic (7.5) has two real positive roots which move together, 
with the maximum growth rate diminishing. These coalesce and form a conjugate pair 
whose real part then increases. When K is allowed to vary the picture is broadly similar, 
and for given values of h and G there is a value of E which gives optimal stability. 

Some of the growth rates are given by Saville (1971 a) for the case h = 78 appropriate 
to water, which we reproduce below. As we discussed in the introduction, there are 
some difficulties in producing aqueous jets via the cone-jet process, but these can be 
overcome. We are also interested here in lower values of h appropriate to Hayati et al.'s 
(1987) experiments. 

In the absence of any electric field, the most unstable Rayleigh mode is m = 0 ,  K z 
0.7, for which the growth rate sT z 0.3433~~.  As the electric field is increased for fixed 
G and A, the maximum growth rate, sM,  decreases until some minimum value, smin, is 
attained when E = Emin. At this critical value of E two different wavenumbers have the 
same maximal growth rate. As E is increased through Emin the wavenumber of the 
most unstable mode, K ~ ,  is discontinuous, as is the derivative of sM with respect to E. 
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FIGURE 3. (a)  The maximum growth rate, s,, and (b) the corresponding wavenumber K ~ ,  as 
functions of E for qo = 0, h = 2 and G = 0 . 2 5 ,  0 . 5 ,  1, 2. 

10-1 

10-4 10-2 1 102 

FIGURE 4. For an uncharged jet, the smallest value as E varies of the maximal growth rate, 
smtn/sT, as a function of G for h = 1, 2 ,  10, 78. 

This behaviour is illustrated in figure 3 for the case h = 2 and various values of G. The 
degree to which stability can be improved by a suitably chosen field strength is 
determined by smin. Typically a jet of speed vo can travel a distance of order uo/smin 
before breaking up. The longevity of the jet can therefore be increased by a suitable 
value of E, even when qo = 0 = so. In figure 4, the minimum value of the maximum 
growth rate, smin, is drawn on a log-log graph against G, for various values of A ;  smin 
is expressed as a proportion of sT, the largest growth rate when E = 0. It is found that 
the axisymmetric mode rn = 0 is always the most unstable, although the difference is 
not great for those modes with a large oscillatory component. As G + 0 we find that 
Emin cc G, the most unstable wavenumber increases and the instability becomes highly 
oscillatory, as given by Saville. As G increases, Emin increases monotonically and faster 
than linearly. 

G 
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We can now consider the effect of introducing a small surface charge 40. This first 
manifests itself by means of the shear rate so in (4.18). The multiplicative factor of i in 
(4.18) enables the effects of small so to be understood easily. If ŝ  = s* is a real root of 
(7.5), then it will be perturbed by the introduction of so in (4.18) to a root of the form 
s” = s* +so 7, s,, where s, is purely imaginary. To leading order, the effect on the growth 
rate is to introduce a small oscillatory component. If s* is either of a pair of complex- 
conjugate roots, then s, will be i times one of two complex conjugates. The real part 
of one of the complex roots will therefore be increased by the perturbation, while the 
other will be decreased. The net effect is to increase the growth rate of instabilities. As 
qo is increased further, so becomes O(s,) before the R/s  terms in (7.2) become 
significant. We then have a quartic equation for i, 

s^4+(a2-~d)s”3+(a , -~ ida , ) s^2+a , s^-~ idA~E2/~  = 0, (7.10) 

where d = so 7,Z’/I. We have seen that when s, 9 sE, a sufficiently large shear so can 
suppress the capillary instability, and we might wonder whether it could also control 
charge over-relaxation. However, it turns out that a necessary condition for all the 
roots of (7.10) to lie in the left-half plane is once again a, < a, a, which we know to be 
universally false. All modes are unstable on the charge relaxation time 7r, even in the 
presence of shear. 

8. Low tangential field 

field along the jet, E,, is negligible so that 
Another limit affording great simplification is that when the component of electric 

Once again, the shear so is small in this limit, and so we may self-consistently consider 
m =+ 0. In contrast to $7, the presence of surface charge in the unperturbed state renders 
the jet sensitive to changes in surface area, especially at low conductivity. If we set 
E, = 0 = so in (3.1 1) we see that either T-tO or R - T,/,ul/’ as ,u -+O.  This latter 
alternative is inconsistent with (4.17) from which we find that T, - R. It is therefore 
necessary for the dilation factor R to be such that z 0 in this limit. This requires 

R/s  z - (1 4- K K ‘ / K )  

and hence from (3.11) 

Using (4.15) and (8.2), to leading order in ,u and E,, equation (4.18) becomes 

2 3 11-2 r, = mw s ) I. 

The last two terms in (8.4) must be regarded as small, initially, although we can allow 
so - sq if we take m = 0. When Eo = 0 and ,u + 0, a little surprisingly we obtain the same 
relation as in the high-conductivity limit, obtained in a flawed form by Bassett (1894) 
and corrected by Taylor (1969). This is plausible on physical grounds. The large surface 
velocities induced at high Reynolds number by a tangential stress have the same effect 
as a small charge relaxation time in redistributing surface charge instantly. In each case 
the internal field E- remains zero and so the permittivity ratio h is irrelevant. As we 
discussed in $ 5 ,  when E, = 0 modes with m = 0 and 0.6 < K < 1 are always unstable, 
while others can be stabilized for suitable choice of 4,. Since the most unstable 
Rayleigh mode has K z 0.7 it is perhaps not surprising that sM, the maximum growth 
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FIGURE 5. (a) The maximal growth rate s,/s,, and (b) most unstable mode K ~ ,  as functions of q for 
Eo = 0 = so and rn = 0, 1. h is arbitrary. Half the smallest value of so needed to stabilize all 
axisymmetric modes ( ~ s s o M / s c )  and the last mode to be stabilized ( K ~ ~ )  are also shown. 

rate taken over all K and m,  is an increasing function of qD. In figure 5, sM/s,  and the 
corresponding wavenumber K~ are plotted against q = sq/s, = (4: a/., y)llZ for m = 0 
and 1. 

Once again, the effect of introducing small ED as a perturbation manifests itself first 
by means of so As we have seen, a suitable value of so can stabilize all axisymmetric 
modes, and the least such value satisfies (5.4) with equality. We illustrate this minimum 
value so = soM(q) occurring when K = KoM(q), in figure 5.  

It is plausible, but not certain, that the limit of this section is the most appropriate 
for many jets occurring in the cone-jet process. If, as is usually the case, the drops 
formed by the eventual break-up of the jet are charged close to their Rayleigh limit, 
then sq - s,. Optimal stability is then afforded by a weak tangential field ED such that 
so - s, - sq or 

In practice smaller tangential fields are encountered, although it is not always clear 
what value of ED is appropriate for a given experiment. 

9. Concluding remarks 
In this paper we have examined the stability implications at high Reynolds number 

of the interaction between surface charge, tangential field and finite charge relaxation 
rates, all of which are present in practical devices. In the absence of electric effects, 
surface tension renders the cylindrical jet unstable to axisymmetric modes. Loosely 
speaking, the addition of surface charge alone accentuates the instability. A slightly 
surprising feature exhibited by poor conductors is that the small fluid viscosity 
performs to some extent the role of a high conductivity in permitting the rapid 
redeployment of surface charge. 

In contrast, the addition of a tangential field alone can suppress the capillary 
instability when the conductivity is high. For moderate conductors, however, charge 
relaxation instabilities appear, which tend to be oscillatory rather than direct. The 
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effects due to the appearance of surface charge are 90" out of phase with those due to 
tangential field and the interaction between the two guarantees that all modes are 
unstable. Nevertheless, a suitable value of the field reduces the overall growth rate of 
instabilities. 

When both qo and E, are present, the primary effect is to introduce shear into the 
unperturbed flow. Assuming that this shear is fully diffused, it can readily control the 
axisymmetric capillary instability, with the effect of increasing significantly the lifetime 
of the jet. This is especially the case for relatively weak fields which, at high Reynolds 
number, can support shear within the jet without exciting electrical instabilities unduly. 
Higher field values give rise to rapid oscillatory instability whose wavelength is small, 
limited only by surface tension. Greatest stability occurs for jets with s, - s, 9 s,, when 
the disturbances grow only on the viscous timescale. 

When either q, or Eo vanishes, axisymmetric modes appear to be the most unstable 
at high Reynolds number, although not by very much when the growth rate s has a 
large imaginary part. This suggests that the restriction of this work to axisymmetric 
modes when q o / ~ o E o  is O(1) may not be too serious a limitation. When the 
axisymmetric modes are all but stabilized by a suitable shear, however, it may well be 
that the rn = 1 mode is the most unstable, as suggested by Huebner's (1969) 
experiments. Moreover, at low Reynolds numbers, with E, = 0 and 7, = 0, Saville 
(1971b) found that the most unstable modes could have rn = 1, in keeping with 
Taylor's (1969) observations of very viscous jets. The high-viscosity limit warrants a 
more general investigation. 

Perhaps the weak point of the model discussed in this paper is the assumption of a 
fully diffused state. We assume that viscous diffusion times are long, but demand that 
a suitable equilibrium be set up before we allow a surface disturbance to appear! The 
justification for such a model relies on the origin of the jet. The motivation for this 
work lies in the cone-jet process depicted in figure 1. A fully self-consistent model of 
this phenomenon has yet to be presented, but in high-Reynolds-number regimes, with 
a recirculating core flow as in Hayati et al. (1987), the jet appears to originate from a 
surface boundary layer, and is presumably well laden with vorticity at its formation 
(Mestel 1994). The fully diffused model studied here is arguably appropriate for such 
a situation. The alternative would be to examine a uniform jet with a growing surface 
layer as the unperturbed state, perhaps using spatial rather than temporal modes. 
There are arguments for using spatial modes for jet stability analysis, but such an 
approach is complicated enough even in the absence of electrical effects (Leib & 
Goldstein 1986), and has not been considered. 

In conclusion, the author would like to express his gratitude to Dr Hayati for 
introducing him to this problem, and for a number of useful and interesting comments 
from Drs Sherwood and Fernandez de la Mora. 
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